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A Banach space X is i?l'l if and only if the radius of each bounded set in X is
half its diameter.

Let A be a bounded subset of a Banach space. Its radius is defined as

rCA) == inf{p ! Sex, p):J A},

where sex, p) denotes the closed sphere of radius p about x. Its diameter is

o(A) = sup{:1 x - y III x, y E AJ.

A Banach space X is 9'1 if X is norm I complemented in every Banach space
Z:J X. It is known (see, e.g., [3, p. 193]) that if X is 9'1 , then o(A) = 2r(A)
for every bounded A C X. Here we show that the converse statement is also
true, that is

THEOREM. If o(A) = 2r(A) for every bounded subset A of a Banach space
X, then X is 9'1 .

The theorem extends the known characterizations of 9'1 spaces due to
Nachbin (see [4]), Griinbaum [2], and Lindenstrauss [4].

To see this, notice that o(A) = 2r(A) for every bounded A in X if and only
if X has the following intersection property for spheres.

IP3. For every family {Sex, ; I)} of pairwise intersecting spheres, and for
every E > 0, n S(xa ; 1 + E) oft 0.

Nachbin showed that X is 9'1 if and only if it has

IPf. For every family {S(x., pJ} of pairwise intersecting spheres,
n Sex. , P.) oft 0.

Lindenstrauss, following the work of Griinbaum, showed that X is 9'1
if and only if X has
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IP2. For every family {S(x, ; ,oJ} of pairwise intersecting spheres, and for
every E O. nS(x, : ,o~( 1 . El)F

In [L Sect. 3. Theorem 4] the following intersection property (wh Ich
differs from IP2 in the expansion of the spheres for large values of ,oJ was
shown to be equivalent to IPI.

IP~. For every hllnily:S(x, ; pJJ of pairwise Intersecting spheres. and fIll'
every £ O. nS(x( ;,0(,0. E)

Grunbaum [2] showed that X has IP2 if and only If. I'llI' every" 0 ,ll1d
every r C'( with dim( r,)() L there is a projectilll1 of r onto Y with
norm I E. Lindel1strauss [4. Theorem 6.10] thcn showed that such an
X must be a .1') space. Our strategy. then. is to show that. if ;( has lP3. then
I'llI' every r:J X with dim( y r,l;') I, and for every £ O. there is a projection
of Y onto X with norm I E. It would be somc\Nhat more pleasant to

show directly that. with IP3. there is ;liready a norm I pr(~jectioll of r onto
X. since then a standard Zorn's lemma argument would show directly that
j' is ,;;\ . This would provide a proof of the theorem without appeal to the
result of Lindenstrauss. and. in bct. provide an alternative proof \)f his
theorem.

Pro%/the theorem. We 1irst show that. if X has IP3. then every collection
{SIx" ; 1)} of pairwise intersecting spheres has a nonempty intersection. Let
('Ii ',0 with £1 I. If Yl En S(x,; I E)). the triangle inequality show,
that SCh : E j ) meets each of the spheres S(x0 ; I). Let

Now, n{S(z, I) , z eLl} S(Yl, El ). so it follows that {S(X~,ll; 1l: is a pair­
wise intersecting family. Proceed inductively in this way to produce families
{x,} C {X(~l)} C {X,~21} C . so that. for each 1/. nS(.<nl). IE,,):J

n S(x,~nl, I ·i· En~ll '/. . Since

nSc-x-::'l, 1 1 E" (1) C n{S(z; I + Er, 'I) , Z C Z,,; su" ; En

the diameter of nS(x~nl: I En 11) goes to zero as 1/ .. ,. CJJ. It is immediate
that n" n~ S(x~n); I + crH) C Sex, ; I l. which is, therefore, nonempty.
Thus if A {x,} has diameter 2. there is a sphere of radius 1 containing A.

We are now in a position to construct the desired projections. Let Y be an
arbitrary Banach space with Y =:J X and dime Yj Xl I. Let fEY"'. 1,
f(X) o. Let X o I-l(e'l.), which for each ,\: is a hyperplane in Y. isometric
to X. With Sly, p) denoting the sphere of radius p about)' in Y, let B,
5(0; I) n X~ for 0 \: <: I, so that each B, is a set in X" with o( B,,) ,..,
By the iirst part of the proof, C, nlS(x. I) : c' Eo ~ (' X,

We now show that for any z, C,. the projectIOn P, of Y onto X along
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z, (defined by P,(u) = u - (f(u)/ex) z,) has the property that Ii Pou II ~ 1
if [[ u II ~ 1 and feu) ): ex. First, if feu) = ex, and I[ u II ~ 1, we have

P,(u) = u - z, ,

which has norm ~1 by the selection of zo' Now, with ex fixed, define rps:
Xo -+ Xs by

rpe( y) = y + (~ -: ex ) z,

for each f3 > ex, Notice that the point y is on the segment joining PJy) and
£Pe(y) for each y in Xo • Thus, if y E Bo ' I: y II = 1, since Ii PJy) "'; 1, we
have II rpiy) II ?~ I. Since rps(XcJ == Xs , it follows by convexity that rprlB,J:J
Be : Consider the cylinder

rc is a convex body with boundary

and any y E Bex with II y Ii < 1 is in the interior of «/, Further, £PiBo ) =

«/ n Xe . Now suppose that x E Xe\£Pe(B,) with II x II < 1. For any y E Bex

with II y Ii < 1, the segment [y, x] contains only vectors of norm <1, but it
must cross the lateral boundary (U{[Pex(z), £Pe(z)] I z E Bex , II z II = I}) of
'6' at a point u with feu) > ex. This forces II u II ): 1, which is a contradiction.
Since £Ps(Bo):J Bs '

Thus, u II ~ 1, feu) ): ex forces I, P,(u) II ~ 1. To complete the proof, simply
observe that

so that by choosing (3 close to 1 and noting that II rps(z,) II < 2, Ii P,(u) I: ~
1 + (2/{3) i feu) I jf II u!1 ~ 1. Thus, for 0 ~ feu) ~ ex. and ex < (3E/2, we
have II P,(u) II ~ 1 + E.

This, combined with the remarks preceding the present proof, establishes
our theorem.

Remark. It should be noted that one can devise a somewhat simpler
proof of the theorem modeled after Griinbaum's proof [2], which stays in the
context of intersection properties. However, the author prefers this version
which seems to display more of the geometric difficulty encountered in
trying to avoid the use of Lindenstrauss' theorem.
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